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This document contains supplemental material describ-
ing details of the algorithms, datasets, and evaluations for
RESCAN.

1. Algorithmic Details
In this section, we provide further details pertaining to

the energy function and search algorithm.

1.1. Hysteresis Term

In this section we provide additional details regarding
the Hysteresis Term. As seen in the figure 1, coffee
tables, trash bins and miscellanea are the most frequently
moving objects. A simple common-sense explanation of
this behaviour is that smaller objects are likely to be light
and easy to move. To incorporate this observation into our
objective function, we add a heuristic for selecting value of
σ in the Hysteresis Term. To reiterate, the Hysteresis Term
is computed as:

h+ (1− h)exp(−||T (ck, i)− T (ck, j)||2
2σ2

)

We make σ dependent on the object ok. The value of
σ is computed as σ(ok) = aexp(−bV (ok)) + c. V (ok)
returns the approximate volume of object ok based on
its oriented bounding box. Parameters a, b, c were fit so
that the resulting σ(ok) is inversely proportional to V (ok)
- larger objects obtain smaller σ, leading to a smaller
Hysteresis Term value when object moves significantly.
Smaller objects obtain larger σ, allowing them to move
more freely within the scene with less penalty.

1.2. Parameters

Table 1 lists all parameters used in our system. Please
note that the same set of parameters is used for all of our
experiments.

2. Rescan Dataset Details
For the purpose of evaluating algorithms on our new

task, we have collected a dataset of temporally varying
scenes. The Rescan Dataset contains 3D reconstructions of
common spaces like lounges, study areas and living rooms.

Parameter Value

Pose Proposal - x-step 0.1m
Pose Proposal - y-step 0.1m
Pose Proposal - θ-step π

10

Pose Proposal - Acceptance thresholds t {0.5, 0.4, 0.35, 0.25}
Objective - Weights w {2.0, 0.3, 1.0, 1.8}
Objective - Intersection Term σ 0.3

Table 1: Parameter settings.

Class Total Count Unique Count

chair 576 184
other 199 72
table 145 40
desk 46 16
sofa 38 12
shelves 14 5
bookshelf 3 1

Sum 1021 330

Table 2: Total count describes number of objects in all of
scenes in our dataset. Unique count specifies the number of
unique instances that have appeared across time.

The captured spaces are relatively large, with an average
approximate area of 67.58m2. The RGBD sequences were
captured using the Structure Occipital Sensor, using the
Scannet Capture App [2]. 3D reconstructions were obtained
using an algorithm described in [3].

Each scene was captured between three to five times.
Between each capture, the objects within the scene were
moved in the way that long-term changes that are likely to
occur in such spaces. In most cases, objects were newly
introduced or removed from the scene as they would be in
natural use.

In total Rescan dataset contains 45 sequences, distributed
among 13 distinct scenes (see table 4). For each of the
45 3D reconstructions, we provide semantic instance seg-
mentations describing the contents of the scene (see table



Figure 1: Average movement for objects in the Rescan
dataset. We can observe that objects like desk and sofa
move infrequently. Chairs move significantly more, but on
average stayed relatively close to their previous position.
Table and Other categories encompass objects like coffee
tables and small trash bin. Such objects were easy to
manipulate due to their weight and size. Hence we observe
much more motion for objects falling into either of these
categories.

2). The main difference between Rescan dataset and other
RGBD datasets [4, 2, 1] is the presence of object associa-
tions across time. These associations are expressed in the
form of stable instance segmentation – object A has the
same unique instance id in all time-steps t0, t1, ..., tn. Ob-
ject associations allow us to evaluate algorithms on our task,
and they provide additional information about the scenes,
like the average distance objects within a certain category
have moved (see figure 1).

Since the dataset samples time at very sparse intervals, it
includes cases where the correct associations of object in-
stances across time are ambiguous - multiple arrangements
of objects are equally likely (see figure 2). To deal with this
issue, the Rescan dataset also provides hand-crafted permu-
tations of object instance ids assignments – i.e., sets of ob-
ject associations that are ambiguous – and it includes evalu-
ation metrics that account for these ambiguities. This allows
us to evaluate algorithms without penalties for producing
one of many equally likely solutions.

3. Evaluation Details
In addition to the comparisons and ablation studies pro-

vided in the main paper, we report here results of further
ablation studies aimed at characterizing the limits and be-
havior of our algorithm.

3.1. Limited Movement Study

Our first study analyzes the importance of allowing
the pose proposal step to search an exhaustive range of

Figure 2: Given an arrangement of objects at ti−1, it
is often the case that multiple arrangements at ti make
sense. Rescan dataset provides permutation of object id
assignment to account for such cases.

possible object placements vs. a heuristic that considers
only limited movements. In the limited movement variant
of our method we do not perform the dense search for
arbitrary poses for each object. Instead we only allow
for movement within a 20cm radius around the position
of the object in the previous arrangements. From results
in fig. 3 we can see that the limited movement leads to
a significant decrease in performance. For the instance
segmentation tasks, results are on average similar, however
both method (full movement and limited movement) have
different modes of failure. Full movement might produce
incorrect permutation of chairs around the table, when
Coverage Term outweighs the Hysteresis Term (as discussed
in the main paper). Limited movement does not have that
issue, as no additional poses for such chairs were produced.
It however misses objects that have moved significantly.

3.2. Temporal Stability Study

In our second experiment, we investigate the stability
of our method when the number of scene captures grows.
To this end we introduce an additional scene containing
separate captures at 15 different times. Although this
new scene is relatively small, it contains significant object
motion and frequent object entrance and exit events, and
it spans a long time interval. So, it allows us to more
closely investigate characterize our algorithm’s behavior in
this setting. Figure 4 visualizes the transfer results over all
15 time-steps. In the beginning the method is given ground-
truth segmentation, that is used to estimate segmentation
for the next time-step and so on. We can see that even with
longer sequences our method is able to provide high quality
results, and able to estimate correct number of objects even



Method
Semantic
Label

Semantic
Instance

Temporal
Instance

Limited Movement 0.747 0.675 0.623
Full Movement 0.859 0.837 0.650

Figure 3: A comparison of full vs limited movement
schemes. The limited movement variant leads to signifi-
cant drop in performance. In qualitative comparison (a) is
the source scene with instance segmentation. (b) is the tar-
get scene visualization. (c) and (d) show result using our
method using limited movement and result using full ver-
sion of the presented method, respectively.

as some exit or enter the scene.

3.3. Timings

In this section, we present average running times for all
the stages of the proposed pipeline.

Procedure Timing(s.)

Pose Proposal 1397.9
Greedy Initialization 70.2
Simulated Annealing 93.6
Segmentation Transfer 45.9

Even with the simplifications proposed the Pose Pro-
posal stage is still the most time consuming stage of our
system. Our algorithm can be however made easily parallel
to produce sets of pose proposals for multiple objects at the
same time. Another direction for future work would be to
learn conditional embedding of a scene and candidate object
to a space that returns correct poses, instead doing purely
geometrical matching. However, since this is an offline sys-
tem, the current run times do not contribute significantly to

Figure 4: Segmentation transfer result over 15 time-steps.
Our algorithm is able to provide stable segmentation trans-
fer over longer sequences.

its overall utility.

3.4. Failure Cases

In this section, we provide an expanded discussion of the
failure modes of our method.
Novel object’s appearance The quality of the segmentation
of the scene at time ti depends on the amount of information
shared between the reconstructions at time ti−1 and time



Figure 5: Scene capture at t0 is missing the part scanned
in ti(highlighted). Due to the lack of overlap between two
captures, some objects at t1 are missed.

ti. If the scene Si contains significantly more objects than
Si−1 (either due to the sudden appearance, or an incomplete
scanning at ti−1), our method prefers to only predict labels
for the parts of the scene that are shared between Si and
Si−1 (see fig. 5). This is a result of our formulation of
the Hysteresis Term which aims to create object identity
associations between Si and Si−1, and is penalized when
adding many novel objects. Secondly, while our method is
capable of providing labels for novel objects, this capability
is however limited to objects that exist in the temporal
model Mi−1. When a novel object outside O appears, our
method either a) mislabels it or b) leaves it unlabelled. The
first case happens if the novel object’s geometry is similar
to some object ∈ Mi−1, so that Pose Proposal stage is
able to generate potential locations. The second happens
if the novel object is completely different than any of the
objects in O. In the Rescan dataset we encounter a single
case where such situation happen. In figure 6 we can see
mislabeled thrash bins - the reason for this is the lack of
such objects at previous time-step.
Small object’s movement Given the form of the Coverage
Term, larger objects are preferred, as object’s contribution to
the overall score is proportional to its size. Smaller objects
contribute much less, while at the same time are more likely
to move. In the section 1.1 we outlined our strategy to
combat this issue, however it still occurs in certain cases,
like the one visualized in figure 7.
Partial Geometry The Pose Proposal stage attempts to
generate sets of poses for each object ok ∈ O based on
the the geometry of the target scene Si. If some parts of the
scene were scanned partially, the Pose Proposal stage is not
be able to find correct candidate poses for such parts of Si.
As a result with an incomplete set of poses, the subsequent
stage of Arrangement Optimization has no hope for success,
as correct locations of objects are simply not within its

Figure 6: (a) Ground truth segmentation. (b) Semantic label
prediction. The lack of thrash bins in previous timesteps
causes our method to mislabel the thrashbin as a part of the
column.

Figure 7: When small objects, like thrash bin or coffee table
move significantly, our method may not estimate correct
instance labels.

search space. Such cases usually arise at the peripherals
of the scene, which were not captured carefully (see fig. 8).

Permutation of objects Additional failure case we observe
is the permutations of the objects of a similar visual ap-
pearance that reside in close spatial proximity. A concrete
example of this general concept is ”chairs around the table”
case. Aforementioned similarity of the objects, combined
with a slight movement and imperfections of the reconstruc-
tion process causes the Rescan algorithm to confuse the lo-
cations of the objects of the same semantic class. This is ad-
ditionally exacerbated by the fact that that in such settings
objects are relatively close, making the Hysteresis Term a
poor discriminator (figure 9)

Overall the performance of our method is still high
despite these issues. Moreover, most of the above issues
could be resolved with an alternative formulations of each



Figure 8: Left - partially scanned geometry. Middle -
ground truth segmentation. Right - predicted segmentation.
Partial scanning prevents effective pose proposal, resulting
in sub-optimal segmentation results.

Figure 9: Top - ground truth segmentation. Bottom - pre-
dicted segmentation. For sets of visually similar objects our
method might produce incorrect permutations of identity
assignments.

of the objective function’s terms. Learned alternatives for
these terms are an interesting direction for the future work.
A more fundamental issue comes from the case of an object
outside O appearance. Without a similar object example in
the database, our method either mislabels the novel object,
or provides no labels. A detection of such cases is also an
interesting future direction. One way of resolving it would
be to put user in the loop, or combine Rescan algorithm with
supervised approaches for instance segmentation.



t0 t1 t2 t3 t4

Table 4: Visualization of all scenes in the Rescan Dataset



A. Qualitative Comparison Results
A.1. Semantic Instance Transfer Task

Table 5: Semantic Instance and Instance Transfer Task. In the first row for each scene (gray background) we visualize ground
truth segmentation at time t0. Following rows showcase visualization of instance segmentation estimations. Colors indicate
temporal association.

Scene Ground Truth Rescan MASC MASC(fine-tuned)

Continued on next page



Table 5 – Continued from previous page

Scene Ground Truth Rescan MASC MASC(fine-tuned)
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Table 5 – Continued from previous page

Scene Ground Truth Rescan MASC MASC(fine-tuned)
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Scene Ground Truth Rescan MASC MASC(fine-tuned)
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Scene Ground Truth Rescan MASC MASC(fine-tuned)

A.2. Semantic Label Task

Table 6: Semantic Label Task. In the first row for each scene (gray background) we provide reference of the scene S0

Scene Ground Truth Rescan SparseConvNet MASC MASC(fine-tuned)

Continued on next page



Table 6 – Continued from previous page

Scene Ground Truth Rescan SparseConvNet MASC MASC(fine-tuned)
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Scene Ground Truth Rescan SparseConvNet MASC MASC(fine-tuned)
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Scene Ground Truth Rescan SparseConvNet MASC MASC(fine-tuned)
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Scene Ground Truth Rescan SparseConvNet MASC MASC(fine-tuned)
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Scene Ground Truth Rescan SparseConvNet MASC MASC(fine-tuned)

B. Ablation Study Results
B.1. Semantic Instance Transfer Task

Table 7: Semantic Instance and Instance Transfer Task. In the first row for each scene (gray background) we visualize ground
truth segmentation at time t0. Following rows showcase visualization of instance segmentation estimations. Colors indicate
temporal association.

Scene Ground Truth Rescan No Coverage No Geometry No Intersection No Hysteresis

Continued on next page
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Scene Ground Truth Rescan No Coverage No Geometry No Intersection No Hysteresis
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Scene Ground Truth Rescan No Coverage No Geometry No Intersection No Hysteresis
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Scene Ground Truth Rescan No Coverage No Geometry No Intersection No Hysteresis
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Scene Ground Truth Rescan No Coverage No Geometry No Intersection No Hysteresis

B.2. Semantic Label Task

Table 8: Semantic Label Task. In the first row for each scene (gray background) we provide reference of the scene S0

Scene Ground Truth All Terms No Coverage No Geometry No Intersection No Hysteresis

Continued on next page
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Scene Ground Truth All Terms No Coverage No Geometry No Intersection No Hysteresis
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Scene Ground Truth All Terms No Coverage No Geometry No Intersection No Hysteresis
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Scene Ground Truth All Terms No Coverage No Geometry No Intersection No Hysteresis

C. Limited Movement Study Results
C.1. Semantic Instance Transfer Task

Table 9: Semantic Instance and Instance Transfer Task. In the first row for each scene (gray background) we visualize ground
truth segmentation at time t0. Following rows showcase visualization of instance segmentation estimations. Colors indicate
temporal association.

Scene Ground Truth Full Movement Limited Movement
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Scene Ground Truth Full Movement Limited Movement

Continued on next page



Table 9 – Continued from previous page

Scene Ground Truth Full Movement Limited Movement
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Scene Ground Truth Full Movement Limited Movement
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Scene Ground Truth Full Movement Limited Movement
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Scene Ground Truth Full Movement Limited Movement

C.2. Semantic Label Task

Table 10: Semantic Label Task. In the first row for each scene (gray background) we provide reference of the scene S0

Scene Ground Truth Full Movement Limited Movement

Continued on next page
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Scene Ground Truth Full Movement Limited Movement
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Scene Ground Truth Full Movement Limited Movement

Continued on next page



Table 10 – Continued from previous page

Scene Ground Truth Full Movement Limited Movement
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Scene Ground Truth Full Movement Limited Movement
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